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PITCH ATTITUDE, FLIGHT PATH, AND AIRSPEED CONTROL
DURING APPROACH AND LANDING OF A POWERED
LIFT STOL AIRCRAFT

James A. Franklin and Robert C. Innis

Ames Research Center
Moffett Field, California, 94035

SUMMARY

Analytical investigations and piloted moving base simulator
evaluations were conducted for manual control of pitch attitude,
flight path, and airspeed for the approach and landing of a
powered 1ift jet STOL aircraft. Flight path and speed response
characteristics were described analytically and were evaluated
for the simulation experiments which were carried out on a
large motion simulator (FSAA) at Ames Research Center. The
response characteristics were selected and evaluated for a
specified path and speed control technique. These characteris-
tics were (1) the initial pitch response and steady pitch rate
sensitivity for control of attitude with a pitch rate command/
attitude hold system, (2) the initial flight path response,
flight path overshoot, and flight path-airspeed coupling in
response to a change in thrust, and (3) the sensitivity of
airspeed to pitch attitude changes. Results are presented in
the form of pilot opinion ratings and commentary, substantiated
where appropriate by response time histories and aircraft states
at the point of touchdown.

NOTATION
AuT Gain of the thrust to speed transfer function,
ft/sec/1b
A Gain of the attitude to speed transfer functionm,
ud
ft/sec/rad
A T Gain of the thrust to flight path transfer
Y function, rad/1lb
A 0 Gain of the attitude to flight path transfer
Y function, rad/rad
a, Normal acceleration, g's
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cj Thrust_coefficient for cold blowing air,
Teo14/9y

db Decibels

dy/av Change of flight path with airspeed for
constant thrust, deg/kt

Fc Pilot's control column force, lbs

GW Gross weight, 1lbs

g Acceleration due to gravity, ft/sec2

H6 Dimensional elevator hinge moment derivative

e due to Elevator deflection, l/I (BH /86 ),

rad/sec“/rad

Hé Dimensional elevator hinge moment derivative

e due to elevator deflection rate, 1/I (SH /36 )

1/sec

h Altitude, ft

h Vertical velocity, ft/sec or ft/min

IFR Instrument flight rules

ILS Instrument landing system

Ie Elevator moment of inertia, slug—ft2

Ix y Roll moment of inertia, slug—ft2

Iy Pitch moment of inertia, slug—ft2

Iz Yaw moment of inertia, slug—ft2

Ixz Cross—-product of inertia, slug—ft2

3j Complex number, (—l)l/2

KI Gain for pitch rate command integrator,
deg/sec/in

Kq Pitch rate feedback gain to elevator,

deg/deg/sec



Airspeed feedback gain to nozzle, deg/kt
Angle of attack feedback gain to nozzle, deg/deg
Column position feedforward gain, deg/in

Pitch attitude feedback gain to elevator,
deg/deg

Pitching moment, ft-1bs
Aircraft mass, slugs
Pitch rate damping, 1/Iy (3M/3q),1/sec

Pitch acceleration derivative due to forward
speed, l/Iy (oM/3u) ,rad/sec? per ft/sec

Longitudinal static angle of attack stability,
1/Iy (oM/3a), rad/sec2/rad

Pitch acceleration derivative due to rate of
change of angle of attack, 1/Iy (5M/3a),1/sec

Elevator control effectiveness, 1/1 (8M/36e),
rad/sec?/rad y

Pitch acceleration derivative due to thrust,
/1, (aM/BGT),rad/seczllb

Pitch acceleration derivative duezto nozzle
deflection, l/Iy (aM/SGv),rad/sec /rad

Numerator of the transfer function relating:
the response r to an input 1

Coupling numerator for flight path response
to thrust with attitude to elevator loop closed

Coupling numerator for airspeed response to
thrust with attitude to elevator loop closed

Body axis pitch rate, deg/sec
Dynamic pressure, lbs/ft2

Wing area, ft2



Laplace operator, og+jw
Time, sec
Component of thrust due to hot jet exhaust, 1bs

Thrust of cold blowing air from augmentor
flap, 1bs

Lead time constant for the 6 - Ge loop

Real roots of the longitudinal characteristic
equation normally associated with the short
period mode

Real roots of the longitudinal characteristic
equation (with the 6 + § loop closed)
normally associated with Fhe short period mode

Low frequency root of the numerator of the
thrust to airspeed transfer function with
the attitude to elevator loop closed

Low frequency root of the numerator of the
attitude to airspeed transfer function

Low frequency root of the numerator of the
thrust to flight path transfer function with
the attitude to elevator loop closed

Low frequency root of the numerator of the
attitude to flight path transfer function

(frequently identified in the literature as
l/Th - the low frequency numerator factor

of t%e elevator to altitude transfer function)
Pitch rate command system time constant

Real roots of the numerator of the elevator
to attitude transfer function

Low frequency real roots of the longitudinal
characteristic equation (with the 6 - 8o loop
closed) normally associated with the phugoid mode

Perturbation airspeed,knotsor ft/sec



Commanded airspeed perturbation, knots or ft/sec
True airspeed, knots or ft/sec

Visual flight rules

Longitudinal force, lbs

Center of gravity location, % mean aerodynamic
chord

Longitudinal acceleration derivative due to
pitch rate, 1/m (3X/3q),ft/sec

Longitudinal acceleration derivative due to
forward speed, 1/m (3X/3u),1l/sec

Longitudinal acceleration derlvatlve due to
angle of attack, 1/m (3X/da), ft/sec?/rad

Longitudinal acceleration derivative due to
angle of attack rate, 1/m (BX/Ba) ft/sec

Elevator drag derivative, 1/m (3X/368 ),
ft/secZ/rad

Longitudinal acceleration derivative due to
thrust, 1/m (8X/36T),ft/sec2/1b

Longitudinal acceleration derivative due to
nozzle deflection, 1/m (3X/3§ ) ft/sec2/rad

Transfer function for speed control with attitude

Transfer function for flight path control with
thrust

Transfer function for attitude control with
elevator

Vertical force, lbs

Vertical acceleration derivative due to pitch
rate, 1/m (92/3q),ft/sec

Vertical acceleration derivative due to forward
speed, 1/m (3Z/3u),1/sec



Vertical acceleration derivatjve due to angle
of attack, 1/m (3Z/3a),ft/sec“/rad

Vertical acceleration derivative due to angle
of attack rate, 1/m (9Z/9a),ft/sec

Elevator lift derivative, 1/m (32/56 ),
ft/sec?/rad

Vertical acceleratign derivative due to thrust,
1/m (BZ/BGT),ft/sec /1b

Vertical acceleration derivativg due to nozzle
deflection, 1/m (82/86 ), ft/sec’/rad

Angle of attack, deg or rad

Flight path angle, deg or rad

Commanded flight path angle, deg or rad
Steady state flight path angle, deg or rad

Characteristic matrix for longitudinal equations
of motion; incremental value

Ratio of change of steady state airspeed to
flight path due to a change in thrust (constant
pitch attitude), knots/deg

Change in steady state airspeed per unit change
in pitch attitude (constant thrust), knots/deg

Maximum flight path change following a change
in thrust, deg

Ratio of maximum to steady state change of
flight path due to a change in thrust (constant
pitch attitude)

Control column deflection, in

Elevator deflection, deg

Commanded elevator deflection, deg

Flap deflection, deg

Throttle deflection, deg; change in thrust, lbs



De

I®)
X( )

Nozzle deflection, deg

Damping ratio and natural frequency of the
phugoid mode

Damping ratio and natural frequency of the
phugoid mode (with the 6 -+ Ge loop closed)

Damping ratio and natural frequency of the
short period mode

Damping ratio and natural frequency of the
short period mode (with the 6 + 6e loop
closed) '

Damping ratio and natural frequency of the
numerator roots of the elevator to attitude
transfer function

Real part of a complex root

Frequency, rad/sec

Time constant for initial flight path response
to thrust, sec

Pitch attitude, deg

Commanded pitch attitude, deg

Pitch attitude error, deg

Maximum pitch rate response to elevator, deg/sec

Steady state pitch rate response to elevator,
deg/sec

Effective thrust inclination, deg
Derivative with respect to time, d( )/dt
Absolute value of ( )

Phase angle of ( )

Approximately equal to



INTRODUCTION

Manual control of a tramsport aircraft which is capable
of operation at speeds within the STOL flight regime, and
which utilizes significant amounts of power to augment its
basic aerodynamics is generally more difficult than control
of conventional aircraft operating at higher speeds. In
particular, longitudinal control is adversely affected by
the low speed, high wing loading, and high inertias typical
of this category of aircraft.

This report presents results of an analytical and
experimental investigation of some of the longitudinal control
problems of concern. The purpose of the analytical study
was to describe the features which characterize pitch attitude,
flight path, and speed response to the pilot, and to identify
the contribution to these response characteristics of aircraft
configuration and flight condition. The results of the
analysis were used to guide an experimental investigation
conducted on a large motion aircraft simulator. Pilot evaluations
were obtained in this investigation to define the relative
importance of the significant response characteristics to
manual control of the STOL approach and landing.



ANALYTICAL INVESTIGATION
Pitch Attitude Control

Precise control of pitch attitude is essential for control
of flight path and airspeed during the landing approach. Effort
demanded of the pilot to overcome deficiencles in attitude
control assoclated with sluggish attitude response and strong
phugoid excitation creates a workload which can seriously detract
from his performance of the overall STOL landing. Consequently,
stability and command augmentation is frequently incorporated in
the longitudinal control system of these vehicles. These
augmentation systems typically take the form of attitude command
or rate command/attitude hold systems. The current study
concentrated on evaluation of a pitch rate command/pitch attitude
hold system.

The system is shown conceptually in the block diagram of
Figure 1. The system can be tailored to provide pitch rate
proportional to the pilot's command input with pitch attitude
hold when the control is neutralized. This system improves
precision of attitude control and reduces the pilot's workload
by effectively trimming the airplane at the desired attitude.
Control semsitivity can be tailored to the pilot's preference.

The significant characteristics of the rate command
system's response can best be appreciated by considering the
separate contributions of the attitude and rate feedbacks
which provide pitch damping and stabilization, and the command
inputs proportional to control displacement and its time
integral. Closing the pitch rate and attitude loops alters
the airplane's short period and phugoid roots and the pitch
attitude transfer function as shown in Figure 2. Both short
period and phugoid mode damping are improved considerably
resulting in the virtual suppression of the phugoid mode. The
closed loop attitude transfer function effectively takes
on the character of a second order system with high damping
due to the near cancellation of the closed loop roots assoclated
with the phugoid and the attitude numerator roots at Wy i.e.,
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or by approximate cancellation of terms

o s
ec (s + 1/T;p1)?s + l/T;p2> )

This result is readily observed in the Bode plot of Figure 3a.
Adding the rate command elements to the forward loop modifies
the transfer function of equation (2) to the form

(rys + 1)

K.M
8§ 8e|sfs + 1/T' )(s + 1/T' )
( sp; sp,

£ 3)
6C

which is illustrated in Figure 3b. The form of this attitude
transfer function is equivalent to the idealized short period
approximation to the open loop attitude response to elevator,
8/8e. In the closed loop equation (3), the numerator factor

(s + 1/Tg) is equivalent to the (s + 1/Tgy) factor of the tra-
ditional 6/8, transfer function, while the closed loop short
period mode bears obvious resemblance to its open loop counter-
part. Such similarity leads to the inference that characteristics
of the open loop attitude response to elevator which are important
for manual control will be of similar importance in the equivalent
closed loop case; further, that characteristics of the open loop
response given good pilot ratings would be similarly rated for

the rate command system.

*
Strictly speaking, the attitude numerator

N - M 2 4 X + Eﬁ s + X Eﬁ._ fﬁ 7
) s |® u vV u V vV "uf’
e e o

(o]

Whether this polynomial factors into a complex pair as indicated in
equation (1) or into two real roots depends on the magnitude of the
derivatives Xy and Z,. Large values of Xy and Z, tend to pro-
duce the complex factors whereas if Xy and Z,; were small, the
factors would occur in the more familiar form (g + l/Tel)(s + 1/T92).
For the case where Xy = 8 , the factors would be given by

1/Tg; = -X, and YTy, = -Z,/V.
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Characteristics of short term attitude response which have
been found to be important in previous handling qualities
studies (References 1, 2, and 3) are the initial pitch rate
response per unit control, the steady state pitch rate per unit
control deflection or force, the overshoot in pitch rate
response, and the long term attitude stiffness and suscept-
ibility to disturbances either from aircraft configuration
changes or turbulence. Elements of the 6/8e transfer
function (equation 3) which relate to these response character-
istics may be observed in the following relationships:

, e _ '
e initial pitch sensitivity, E: = KGMGeTG (4)
e steady state pitch rate sensitivity, 9§§ =KM, T' T' (5)
6c ) Ge SP; SP,

6
e pitch rate overshoot, .max = < /Td s sp /T! >
2

8 SPy
SSs

as shown in Figure 4.

e attitude stiffness and susceptibility to pitch disturbances,

2 (6)

[AM]s—»O spl sp
(5], (v77)

For the pilot evaluations of attitude control during this program,
variations were made in Tg and TS in a manner to permit
independent evaluations of the 1n1tlai pitch rate and steady state
pitch rate sensitivities. Pitch rate overshoot and attitude
stiffness were not independent variables. Overshoot character-
istics reflected the variations in 6/6 and 6gg/8. while
attitude stiffness varied primarily as a function of 1/Tsp1Ts .
Specific evaluation configurations are described subsequently gn
this report.

Flight Path and Airspeed Control

Precise control of flight path and airspeed during approach
and flare is essential to the achievement of STOL landing field



performance, touchdown sink rates which are acceptable for

ride comfort and structural safety considerations, and adequate
operating margins for flight safety. Recently published
experience with ground based and in-flight simulator evaluations
of powered 1lift jet STOL aircraft (References 4-8) has emphasized
the difficulties with path and speed control caused by:

® sluggish flight path response to attitude changes
¢ operation on the back-side of the thrust required curve
® 1large changes in 11ft and drag with engine power setting

® significant coupling between flight path and airspeed
with either attitude or power changes

changes in operating margins with airspeed and angle of
attack.

Such behavior implies that significant demands will be placed
on the pilot in the way of attention and effort that must be
devoted to path and speed control in order to achieve accept-
able performance during the approach and landing. Furthermore,
it has been evident from this previous work that consistent
landing performance and touchdown sink rates have not been
achieved even in a research environment. Consequently, it
is important to examine the aircraft's behavior so far as
flight path and speed response to the pilot's controls are
concerned to gain an impression of which response characteristics
are likely to be important to the pilot. The discussion which
follows describes these response characteristics analytically
and identifies the contribution of the aircraft configuration
and the flight condition at which it is operated to these response
characteristics,

Approximate Response Relationships

The primary controls over path and speed which are assumed
in this analysis to be available to the pilot are pitth attitude
and engine thrust. When pitch attitude is either tightly con-
trolled by the pilot or is stabilized with a command augmenta-
tion system, the aircraft's path and speed response may be
described by the following relationships

® response to attitude changes
(a) flight path (b) airspeed
Y
N Ne
% A+ Y N % A+ YN
6+6e 648 6+6e 68

e
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® response to thrust changes

(a) flight path (b) airspeed
Ny o+ Ygs Ny + TN g
<1_> _ %1 e°T <g_> _°r T’e
§ 8 S - 8
T 658 A+ YGNG T 656 A+ Y9N6
e e e e

for the system represented by the block diagram of Figure 5.
It is indicated in Reference 7 that the dominant path and
speed response takes place at low frequency, in the region of
the root of wﬁ and below. As a consequence, path and speed
response at frequencies approaching the closed loop short
period may be disregarded for the purpose of approximating the
aircraft behavior apparent to the pilot. Such an assumption
is justified for path and speed response to attitude by the

. characteristics illustrated in Figure 6, which are typical
of the STOL category of aircraft. These response characteris-
tics may be represented quite adequately by

8

+ 1/T
8 / y

6
X
<6c> Ayé s2 + 2¢'w' s + w'2
= PP P

and

s + l/Tu

u 0
<§_> Aue s2 + 2z w' s + w'2
/s, PP P

where the numerator roots 1/T 6 and 1/Tue are the lowest
frequency factors of the transzer function numerators N

and Ng and the denominator roots are the closed loop rSots
associated with the phugoid mode. The same sort of character
is exhibited in Figure 7(a) by the path and speed transfer
functions to thrust. Contributions of the higher frequency
numerator factors and the short period mode are low enough in
magnitude to be neglected. Figure 7(b) illustrates the wide
separation in frequency of the factors of the path and speed
numerators of equations 8(a) and (b) for the value of the
attitude loop gain Kz required to achieve satisfactorily
tight attitude control. The thrust transfer functions may
thus be approximated by

(8)

(9

(10)
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s + 1/T
. Y
= =4\ ) (1)
T T\s" + 2z'w's + '
68 PP P
and
. s + 1/TuT
<¥> ) AuT s2 + 2z'w' s + w'?' a2
66 PP P

It is now apparent that the path and speed transfer functions
to attitude and thrust of equations (9) to (12) appear in the
general form

Response _ A(s + 1/T) (13)
Command S2+ 2c'w's + w'z
PP P

with the distinguishing features being the gain A, the numerator
root 1/T, and the closed loop phugoid frequency and damping, wﬁ
and ;. Correspondence between these features and a time history
of the response to a step command input are shown in Figure 8 where
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e the sign of A determines the sign of the initial response

e the relative signs of A and T determine whether the
initial and final response are of the same sign

° fhe magnitude of A and the ratio of 1/T to w!
determines how quickly the airplane responds initgally

e the ratio of 1/T to wé determines the amount of
overshoot of the response

e the magnitude of A/Tw'? determines the magnitude of
the steady state response. ,

The wide range of response characteristics illustrated by this
example are not generally reflected in the individual path and
speed responses. An illustration of path and speed response to
attitude and thrust changes for one particular jet STOL configura-
tion is presented in Figure 9a.

The important point to be made is that the flight path and
speed response characteristics which typify the STOL aircraft
dictate the most effective use of attitude and thrust for control
of path and speed on the approach. Considering the response to
an attitude change at constant thrust shown in Figure 9, the
nose up attitude change produces flight path response typical
of that for operation on the backside of the thrust required
curve. Path initially shallows but eventually steepens in the
long term. Such behavior, as is well known, makes attitude a
rather poor control of flight path. However, speed response
is conventional, and attitude offers reasonable control over
speed providing the harmony between the two is satisfactory.

For an increase in thrust with attitude held constant, flight
path responds quickly with the long term change determined by
specific configuration characteristics. On the other hand

speed response is decidedly adverse in that the airplane de-
celerates for an increase in thrust.. Thrust thus appears to be
an appropriate control for flight path and a rather poor control
for speed.

The preferred control technique is illustrated in the block
diagram of Figure 9b. Pitch attitude is stabilized to achieve
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good short term attitude response and to suppress the phugoid
mode. Tight attitude control can either be accomplished by

the pilot or if, as is typical of this category of aircraft,
attitude control and stabilization places an excessive burden

on the pilot in the presence of other demanding tasks, an
attitude command and stabilization capability can be provided

by stability augmentation system of the type described previously
in this report. With attitude stabilized, airspeed can then

be controlled or changes in speed made through changes in the
commanded pitch attitude. Flight path tracking is accomplished
through changes in thrust. With this control technique specified,
the characteristics of the aircraft's response which could
conceivably be of importance to the pilot for manual control of
the STOL approach and landing may be identified.

Significant Response Characteristics

Considering the example of flight path and airspeed
response to thrust shown in Figure 9a, the features which
characterize the aircraft's behavior (recalling that thrust
is the primary flight path control) are

e the initial response of flight path which indicates
how quickly a path correction can be initiated

e the relationship of the long term to short term change
in flight path, as illustrated by the amount of over-
shoot in the response, which indicates how predictably
the pilot can make the path correction

® the extent of coupling of speed with flight path, as
reflected by the amount of speed change accompanying
the change in flight path, which indicates the amount
of attention the pilot must devote to path and speed
control and the extent to which he must continuously
control path and speed closed loop to achieve the pre-~
cision required for the landing approach.

The response parameters which reflect this behavior are
indicated in Figure 10. Initial flight path response is
represented by the time constant, Tys which is described

by the initial slope, dAY/dt, and the peak response AYp.y.
Flight path overshoot is reflected in the ratio, (AYpax/AYsg)AT-
Flight path-speed coupling is described by the ratio of steady
state speed and path changes, (Au s/AYSS)AT. Short term speed
changes tend to be of small enougi magnitude compared to the
long term change in speed to be ignored.
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Speed control, as was noted previously, is accomplished
through changes in pitch attitude. 1In this case, the steady
state speed change for a given change in attitude, Aus'/Ae
is the factor of interest and can be considered a control

sensitivity of sorts.

In Figure 11 the contributions to the amount of flight
path overshoot can be seen. Whether the characteristic roots
of the flight path response are described by (32 + Zpr s + wp 2y
or by (s + l/Té )(s + l/Téz), the significant contribution is
the ratio of the numerator root, 1/T T»> to the lowest frequency
characteristic root wp or l/Te . Ef secondary importance is
the damping ratio p (partlcularly since ¢! tends to be
greater than .8 for most attitude loop closures) or the ratio
of l/T' to 1/T§ (which can fall between the extremes
Xu/(Zy /Vo) .1 when X, =0 and 1.0 when

2 ‘
(X, +Z./V )" = (4/Vy(XZ, - XZ)-

The amount of overshoot can vary by approximately a factor of
five ti hen the parameters 1/T,.w or T! /T vary from
Lio Lo P /Ty g% o/Tyr VaTY

The path response time constant, Tys is defined by

Ty B A\Ymax/Y

= <AYmax> <AY S S>
AYSS Y

AT

where

2
Z <1/T w' >
BYgq Sy Yp P

]
N

2

]
l/TY wp
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and thus

AYma.x) < 1
T = (14)
Y <AYss T w'2>

AT My p

Therefore, the initial time response is dependent both on the

ratio l/T w! p? which defines the path overshoot characteristics,
and the chagacteristic frequency, wp

Flight path-speed coupling can be derived from the steady
state path and speed response to thrust given by equations (11)
and 12), i.e.,

N
>3 b
<| €
n (/3]
()] 1]
~—
1]
3
‘:>
€ |3
N
=<
» 3
o

A.u TY
= L)L
1A T, 15)
Yt T
where the individual terms as described in Reference 7 are,
A =X (16)
up &g
ZGT
A = - == (17)
YT Vo
. za xa ZsT
l/'].'u =-T+v—x—— (18)
T o o4
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.. X
. GT
1/T =-X +2Z — (19)
T u u ZG' ,
T
w'?ix —Zﬁ—zz(-“— (20)
P uV uV
o o
With suitable manipulation, equation (15) may be rewritten as
w'z
Mss = __.Y_T__p_. Y [ S Eﬁ ' (21)
Ay zZ /v 2]V
8S/pr u o wp
Yt
It is a function of l/TYTw;, both of which enter into the
definition of (AYmax/AYss)AT and T,, and also of the linear
perturbation derivatives Z, and Z,. Hence the extent that
flight path-speed coupling can vary independently of the flight
path response to thrust is determined by the magnitude of the 2
axis derivatives due to speed and angle of attack.
Speed sensitivity to attitude changes is simply the steady
state magnitude of equation (10), i.e.,
Auss Aue
= : (22)
A8 Tu w,Z
o P
where
A, =X, -8 | (23)
8
L] Za
/T = (B (24)
vV \X g
6 o o
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as derived in Reference 7. Thus equation (22) becomes

Au Z
22 - g<v°i><;,lz> (25)
o/\'p

2

and if Xa = 0, so that w; = xu(za/vo),

then Auss/Ae g/X .

u

Contributions of Aircraft Configuration and Flight Condition

Considering the contributions to the flight path and speed
control characteristics shown. respectively  in Figure 11 and
equatidns - (14), (21), and (25), the dominant factors which
appear ‘are l/TY w', wé,Zuand Zy/Vo. The perturbation deriva-
tives which define the path numerator root, 1/TY , and the
closed loop phugoid frequency, wj, are shown in equations (19)
and (20) to be Xy, Xos 2y Zy, and XGT/ZGT' Thus, the
significant flight path and speed response characteristics to
thrust and attitude control are defined in terms of the air-
ceaft's X and Z axis (or drag and 1ift) derivatives due to
speed, angle of attack, and thrust. Reference 9 shows that
these derivatives may be described in terms of the vehicle
configurations and flight condition, i.e.,

e X - axial velocity damping; a function of drag
coefficient, trim airspeed, and wing loading
(may be augmented by autospeed control)

¢ X - drag due to lift; a function of trim airspeed,
wing loading, and induced drag

e Z - vertical force coupling with axial velocity; a
function of trim airspeed

® Z -~ vertical velocity damping; a function of 1lift
curve slope, trim airspeed, and wing loading

. X6 /Z6 - effective_trust line inclination
T °T eT = cot (— XG /Z6 )
T T
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These characteristics are determined for all practical purposes
by the flight condition at which the aircraft is being operated,
by its wing loading, and by the efficiency of its high 1lift
system. Thus, when landing field length (approach speed),
cruise Mach number (wing loading), and high lift system design
are selected, the aircraft's behavior as it appears to the
pilot flying the approach and landing will be essentially
determined.

EXPERIMENTAL PROGRAM

Description of the Simulation

A ground based flight simulation of a powered 1lift jet
STOL aircraft was used as a basis for piloted evaluation of
the pitch attitude, flight path, and airspeed response character~
istics described in the previous section of this report. The
simulation facility utilized was the Ames Research Center Flight
Simulator for Advanced Aircraft (FSAA), a large motion facility
with a high resolution visual display as described in Reference 10.
The vehicle on which the simulation was based was the Augmentor
Wing Research Aircraft, a modified DeHavilland of Canada C-8A
Buffalo airframe incorporating an augmentor flap system for
generating high 1ift coefficients for high wing loading STOL
operation and deflected hot thrust to permit operation on steep
flight paths. The aircraft is described in Reference 11. A
real time digital model of the aircraft's non-linear aerody-
namics and its flight control system were programmed as de-
scribed in Reference 12 for the XDS-Sigma 8 computer dedicated
to the FSAA facility. The static aerodynamic characteristics
were derived as shown in Reference 13 from model tests of the
vehicle in the Ames 40 x 80 foot wind tunnel. Rotary deriva-
tives were estimated using jet flap theory where appropriate.
Supporting data for these derivatives are unpublished although
the models themselves appear in Reference 13. Jet engine
acceleration-deceleration characteristics were modeled to
represent the results shown in Reference 13.

The longitudinal flight control system provided for pitch
axis command augmentation and alteration of the vehicle's
longitudinal force characteristics through the use of vectored
thrust. Pitch control was accomplished through the aircraft's
existing elevator-spring tab system. Augmentation commands
were provided in series with the pilot's control column inputs.
Longitudinal force control was achieved by vectoring the engines'
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hot thrust about a trim position deflected 90 degrees to the
approach path. Thrust vectoring was accomplished by driving
the engine's exhaust nozzles with commands composed of airspeed,
angle of attack, and throttle position error signals. For
thrust vectoring of *15 degrees about the 90 degree trim con-
dition, effective alteration of the basic aircraft's Xy X»

and Xgp derivatives was possible with no corresponding con-
tribution of any consequence to the Z axis force characteris-
tics. A block diagram of the longitudinal control system is
shown in Figure A4 of the Appendix.

Test Program

Pitch attitude control was evaluated using the pitch rate
command /attitude hold system described previously in the report
and shown in Figure 1. A matrix of the test configurations is
presented in Table 1. A description of the basic Augmentor
Wing aircraft, in terms of its stability derivatives, character-
istics modes, pertinent transfer function numerator factors, and
transient response characteristics is provided in the Appendix.
The dynamics of the elevator-spring tab system are documented in
that description.

Flight path and airspeed control evaluations were performed
using the control technique described in Figure 9. Variations
in each of the path and speed response characteristics previously
described were achieved through variations in the longitudinal
force characteristics Xu> Xy» and X5+ The contributions of
these derivatives are described by equations (19) and (20) and
are shown in Figures 12 and 13. Effects of variation in thrust
inclination (67) and drag due to lift (Xy) are shown in Figure 12
for characteristics otherwise representative of the basic aircraft.
In Figure 13, the influence of axial damping (Xy) in combination
with thrust inclination is shown. A summary of the significant
interaction of these derivatives with the response characteristics
is presented in Table II.

Sets of configurations were selected to permit independent
evaluations of the path response time constant 1. and the
speed response to attitude Augg/A8 for minimal path overshoot
and path-speed coupling. It was also possible to evaluate both
the overshoot and coupling parameters independently of the effects
of initial path response to thrust or speed response to attitude.
As can be appreciated from the trends of the overshoot and coupling
parameters in Figures 12 and 13, it was not possible to evaluate
them independently of each other when only X,, Xys» Or 87 were
varied. This point is demonstrated more conclusively in Figure 14,
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by a collection of configurations from Figures 12 and 13 having
common values of Xy, Xy, and 61. The correlation between path
overshoot and path-speed coupling in the region

Auss
I < =1.0 knots/deg
88/)r

is quite strong and is implicit in relationship described by
equation (21), where for constant values of Z, or Z, as
shown in Figure 12, both the overshoot and coupling parameters
are dominated by the term 1/T,. . w!. Variation of either of the
derivatives Z, or 2, could provide for independent variation
in path overshoot or path-speed coupling, although neither of
these derivatives was altered in the test program. The range
over which the overshoot and coupling characteristics could be
considered independent for variations in Z; or Z; is indi-
cated in Figure 14. The region of practical importance to
powered 1ift STOL as determined by wing loading and approach
speed is crosshatched in the figure. Evaluations of test con-
figurations from among those spotted in the region by the solid
symbols gave an appreciation of the contribution of these
characteristics to handling qualities for path and speed con-
trol on the approach.

Specific test configurations for the evaluations are listed
in Table III. Response parameters with their corresponding
transfer function factors and stability derivatives are compiled
therein. A suitable pitch rate command/attitude hold configura-
tion was implemented to reduce the pilot's pitch axis control
workload. The characteristics of this system are indicated in
Figure A4 of the Appendix.

Evaluation Task and Experimental Data

For the approach and landing, the pilot assumed control of
the aircraft with it trimmed and configured for descent on the
glideslope and aligned with the localizer. The approach was made
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to a 1500 foot STOL runway, with touch down zone markings as
indicated in Figure 15. The aircraft was trimmed at 1300 feet
for descent on a 7.5 degree glideslope at an airspeed of 60
knots. Flaps were set at 65 degrees, hot thrust was vectored
90 degrees to the aircraft's reference waterline, and power was
set corresponding to 6380 pounds of hot thrust. Lateral-
directional stability augmentation, including roll damping,
spiral mode stabilization, Dutch roll damping, and turn coordi-
pation, was utilized to improve contrel of bank angle, heading,
and sideslip to prevent these factors from influencing the
pilot's evaluation.

Two Ames experimental test pilots participated in the
program. During the approach, the pilots introduced their own
disturbances, offsets, and abuses as a means of evaluating each
configuration. Both VFR and IFR evaluations were performed.
Approach guidance was provided by raw ILS glideslope and localizer
error information. Time histories of the aircraft's response
and the pilot's control activity were recorded. Average values
and standard deviations were computed over separate altitude
intervals of 1300 to 300 feet and 300 to 50 feet for

pitch attitude normal acceleration at c.g. control column displacement
pitch rate vertical velocity throttle displacement
airspeed glideslope error

Touchdown status information was recorded for

pitch attitude distance from runway threshold
angle of attack sink rate
airspeed

Pilot opinion ratings and commentary based on the Cooper-Harper
scale described in Reference 14, were obtained for each configura-
tion with regard to its handling qualities during the approach.
Separate ratings for the landing flare were not obtained on a
consistent basis; however specific comments on the aircraft's
handling during the flare as compared to the approach were noted.

DISCUSSION OF RESULTS

In the discussion to follow, pilot's evaluations of pitch
attitude, flight path and airspeed control will be presented for
the landing approach. Pilot ratings will specifically apply to
this portion of the task. Separate commentary on landing flare
characteristics will be included in a section at the end of this
discussion.
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Pitch Attitude Control

Features of the pitch rate command system which were
evaluated were the initial pitch rate response sensitivity and
the steady state pitch rate control sensitivity. The test
configurations are illustrated in the root locus and frequency
response plots of Figure 16. Variations in magnitude of the
transfer functions at high frequency provide a range in the
initial pitch sensitivity of §/6c = .05 to .21 rad/sec? per
inch of column. Variations in steady state pitch rate sensi-
tivity which accompany the different levels of low frequency
gain are 0gg/8. = 1.5 to 3.8 deg/sec per inch of column.

Pilot ratings for these configurationé are presented in
Figure 17. They are plotted in the upper diagram against
initial response sensitivity for varying levels of pitch
rate sensitivity. The pilot's preference"for initial pitch
sensitivity lies in the neighborhood of 6/6; = .1 rad/sec?

er inch, with steady pitch rate sensitivity on the order of

855/8c = 2.0 deg/sec per inch. Reductions or increases either
in the initial or steady state pitch rate sensitivities from
either of these values produce moderate degradations in pilot
rating. Pitch rate overshoot does not appear as an independent
variable in these configurations. The relationship of the
overshoot ratio to the initial and steady state control sensi-
tivities is reflected in the lower diagram of Figure 17 with

bmax/0ss varying from 1.0 to 1.5.

Pilot commentary, which is summarized in Figure 18,
indicates objections to abrupt pitch response which characterize
the configurations with the lower Tg, Tgpy/Ts ratios; that is
the highest sensitivity configurations. The contrast in initial
response characteristics is evident in the sample of time
histories of the figure for variations in 1/Tg and 1/T'gp T'sz.
Configurations with higher TéplTép /T, ratios were noted to
be somewhat sluggish in responsé to“the pilot's control input.
Initial response characteristics of the lowest frequency con-
figurations were satisfactory. However, their susceptability
to upset from pitching moment disturbances from power or con-
figuration changes or turbulence made them somewhat objectionable
overall.

In summary, the most favorable characteristics of the pitch
rate command system are represented by closed loop roots corres-
ponding to 1/Tg§ lTé = 2.8 and a first order lead which gives
TéplTépz/T5= .35 g%e corresponding pitch response characteristics
-are .
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%— = .1 rad/sec2 per inch
c

éss

5 - 2.0 deg/sec per inch
c

The pitch axis command and stabilization system utilized for the
subsequent flight path and airspeed control investigation pro-
vided these characteristics and was identical to Configuration 1
of Table I.

Flight Path and Airspeed Control

At the outset of this discussion, the influence of flight
path and airspeed response to thrust will be considered, with
attention given first to the effect of initial flight path
response. Pilot ratings are shown in Figure 19 for a range
of flight path time constants, (t.). The results are presented
for minimal values of flight path overshoot and flight path
speed coupling, i.e., essentially no overshoot or coupling
existed for these configurations. A wide range of flight path~
velocity trim conditions were included in these configurations,
ranging from an extreme backside of the thrust required curve
(dy/dV =.47 deg/knot to an extreme frontside case (dy/dV = -1.23
deg/mot). Pilot ratings appear to be insensitive to variations
in 1 over the range of configurations tested. The results
are understandable in light of the evaluation task. During the
approach, extremely rapid path corrections are not required
and, as the pilots indicate, can readily be made for the various
configurations shown in Figure 19. As indicated in Reference 15,
bandwidths required for closed loop path control are on the
order of .5 to 1.0 radians/second. For these configurations,
and with the effects of engine acceleration-deceleration in-
cluded, the required path control bandwidths can be achieved
with little demand for compensation placed on the pilot.

Scatter in these pilot rating data are somewhat more than
-1/2 rating unit which has come be be expected from experienced
evaluation pilots. If the scatter is anything other than random
in origin, it is likely to be due to a moderate influence of the
range of flight path-velocity (dy/dV) characteristics included
in these configurations. In fact, the pilots' commentary showed
dissatisfaction with the extreme backside or frontside configu-
rations (dy/dV = .47 or -1.23 deg/knot) due to the excessive ppeed
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sensitivity to attitude changes of the former and insensitivity
of speed to attitude of the latter. In neither case did any
consideration of the stability of flight path control with
attitude arise to influence the pilots' ratings.

It should be noted that these configurations were evaluated
for an optimized throttle sensitivity of Zgp= -.08 g's/inch.
No variations in Z axis characteristics were made for the
various configurations. Although an increase in vertical velocity
damping (Z,/V,) could quicken the initial path response, it was
not evaluated in this program. As will be indicated subsequently
in the discussion of flare characteristics, some quickening of
path response such as could be achieved through Z, augmentation
would be beneficial to flare control.

Flight path overshoot (AYmax/AYss) and flight path-speed
coupling (Augg/Aygg) are two characteristics of response to thrust
which, as has been previously noted, could not be evaluated
independently in this program. They are strongly interrelated
due to their mutual sensitivity to changes in longitudinal
(X-axis) force characteristics such as trimmed drag, drag due to
1ift, and thrust inclination. However, this interrelationship
is typical of powered 1lift STOL aircraft in general as was shown
in Figure 14 and the evaluation of mutual changes in these two
parameters which was conducted in this program offers insight
into their influence on path and speed control for this category
of aircraft. Results are presented in Figure 20, with pilot
ratings plotted against the path-speed coupling parameter
(AUSS/AYS Jar- The path-speed coupling influence was identified
by the piiots as the primary contribution to their evaluation
and rating and hence was felt to be the relevant parameter for
interpreting the data.

It is apparent that path-speed coupling has a pronounced
effect on pilot ratings of path-speed control. In particular a
significant degradation in ratings can be noted for values of
(Mugg/AYsg)AT 1in excess of -3 knots/degree. The adverse nature
of the speed response to a flight path change with thrust is
illustrated in the inset diagram at the left of the figure,
where an increase in thrust to shallow the path causes the air-
craft to decelerate, in turn washing out the intended path
correction. Such behavior is particularly undesirable in that
the strongly coupled response demands that the pilot pay con-
siderable attention to path and speed control and to work in a
continuous, coordinated, closed-loop fashion with attitude and
thrust to achieve adequate precision of path and speed control.
Furthermore, the attitude control technique required for holding
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speed constant while making a path correction with thrust is
unnatural. It requires the pilot to lower the nose to hold
speed while attempting to climb and vice-versa. For these two
reasons, strong path-speed coupling can make the aircraft un-
acceptable for flying the STOL approach.

To conclude the discussion of path and speed control for
the approach it is necessary to determine the significance of
speed behavior in response to its primary control, pitch atti-
tude. The parameter for evaluation is the steady speed change
in response to a change in pitch attitude (Auss/Aec). It
should be clear from the relationships associated with equa-
tion (25) that speed response to attitude and path-velocity
(dy/dV) characteristics are strongly related through their
mutual dependence on the level of trimmed drag and drag due to
lift. This interrelation was brought out in the peripheral
discussion related to Figure 19 and the initial flight path
response. The interrelationship is one which provides for
large speed changes with attitude for operation on the back-
side of the thrust required curve and small speed changes with
attitude for frontside operation. For the control technique
utilized in these simulation evaluations of path and speed
response (speed control with attitude, path control with
thrust) considerations related to speed response to attitude
appears to be more important than the degree of frontside or
backside operation involved.

The significance of speed control with attitude is indicated
in Figure 21. Pilot ratings for variations in the speed response
parameter Aug /A8 are plotted for otherwise favorable values
of 1 and (Auss/Ayss)AT. Variations in speed sensitivity to
attitude have only a modest effect on pilot ratings. As might
be expected the pilots objected, although not too strongly, to
insensitive or to excessively sensitive speed response to atti-
tude changes. Poor harmony between speed and attitude either
required objectionably large attitude changes for ordinary speed
control or an unnecessarily fine touch on attitude with attitude
changes to avoid objectionable speed excursions. Proper harmony
seems to dictate a speed-attitude sensitivity on the order of
Augg/A8  between -1.5 and -2.5 knots per degree.

Flare Control

The pilots did not specifically evaluate the flare maneuver
as distinct from the landing approach. However, specific com-
ments were made on flare characteristics where appropriate and

it is on these comments that the following discussion is largely
based.
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First of all it is evident from the results of this program
as well as for those reported in References 4, 5, 6, and 8
that the two-control flare (that is where thrust is used to
augment the flare with attitude) does not produce consistent
STOL landing performance, either in terms of touchdown precision
or low sink rates. A compilation of data of landing precision
in terms of sink rate and point of touchdown for all of the
configurations evaluated in this program is presented in Figure 22.
It should be mentioned that these data were obtained from experi-
mental runs where the pilot's objective was to achieve the best
landing performance possible rather than to carry out an evalu-
ation of the aircraft's handling qualities. The pilots sought
to land the aircraft within the touchdown zone and if possible
at a sink rate of 6 ft/sec or less. The scatter in landing
precision data of Figure 22 speaks for itself. Touchdown sink
rates, with one exception, exceeded 5 ft/sec and most landings
were made at sink rates from 8 to 10 ft/sec. Separation of the
data into sets of configurations which could isolate effects of
flight path time constant and speed response to attitude (which
includes the influence of frontside or backside operation) offers
no further enlightenment. Data is presented in this form in
Figure 23, and there are no discernible trends present for
landing precision, touchdown sink rate or airspeed. '

It can be questioned whether STOL operation is or should
be compatible with minimizing sink rate at touchdown. The
conceivable bounds for sink rate probably lie somewhere between
a 3 ft/sec lower limit comparable to CTOL operation and a 12 to
14 ft/sec upper limit defined by the nominal approach path angle
and airspeed. Without attempting to place the results of this
program in an acceptable or unacceptable category as regards
landing impact, it can be said that landings performed on the
simulator have produced sink rates somewhere half way between
these two limits. These results should be qualified by the
ground effects due to high 1ift included in the simulation.

As noted in Reference 12, ground effects at touchdown produce a
5 percent reduction in drag and a 12 percent reduction in 1lift
for the nominal approach condition.

It should be emphasized that the problem of achieving
accurate landings at low sink rates does not stem from a lack
of capability of the basic aircraft; that is, the capability
for generating the normal load factors to curve the flight
path to terminate the approach at the proper position and
vertical velocity. The potential for generating normal accelera-
tion (Aaz) is more than adequate if aircraft rotation and an
increase in power are both used. Instead, the problem is one
of control of this load factor and how to generate it quickly
and precisely to permit a precision flare to be made. In this
program, no sophisticated control schemes were investigated for
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flare, such as control interconnects (e.g. column to throttles
or Z, augmentation), The basic ailrcraft's controls for short
term flight path changes were evaluated and, as with the other
referenced powered lift STOL simulations, they were found to be
inadequate for the task.

Second, it should be apparent that path and speed control
characteristics which are favorable for the approach are not
necessarily favorable for control through the flare to landing.
In particular, flight path response time constants which have
been shown in Figure 19 to be satisfactory for the approach do
not permit path corrections to be accomplished quickly enough
for the flare. A sample time history of an STOL landing is
presented in Figure 24 for the configuration having the best
path and speed control characteristics for the approach. The
time frame for the flare, from the point at which the pilot
initiates the maneuver with the elevator to touchdown, is 3
seconds. For any control to be useful for path corrections with-
in this time frame, the corrections must be initiated and
stabilized within approximately 2 seconds. Such response
implies equivalent first order time constants on the order of
.75 to 1.0 seconds. Neither the dynamics of the basic air-
frame, which responds at frequencies on the order of w) to
either attitude or thrust changes, or the engine dynamic¢ response,
which requires 1.5 to 2.0 seconds to stabilize following a com—
manded thrust change, offers the kind of response demanded.
Clearly a need exists for utilizing the potential existing in
the basic aerodynamics and reserve thrust to achieve the
desired flare capability. The solution most likely lies with
quickened engine acceleration characteristics and augmentation
of the aircraft's vertical velocity damping Zy/Vo. So far as
speed response and control is concerned, it could be speculated
that the characteristics of speed response to thrust which were
judged adverse for the approach may not be so objectionable
for the flare. The time span over which the speed change can
occur does not allow for significant changes in speed consider-
ing the speed response time constants involved. However,
speed response to attitude is likely to be important to the
pilot in order that he can rely on a reasonable and predictable
speed bleed off through the flare to touchdown.

The third point to be made is that the successful use of
two controls to accomplish the flare demands that one of the
controls be identified as primary and the other control be
relegated to a secondary or supporting role. Throughout this
program and during other STOL simulations at Ames as well, the
evaluation pilots virtually unanimously expressed a preference
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for a single control with which to perform the flare. Their
motivation was the desire to simplify the flare technique so

as to be able to get consistent results in geal operational
use. If a single control cannot be devised and, as a result,
two controls must be used, the pilots would prefer to be able
to initiate the flare with the primary control and to use it
for flight path corrections as required throughout the flare.
The primary control could either be attitude or power and it
should have the quick time response previously indicated. The
secondary control would be used in an open-loop or pre-programmed
manner to assist the flare and would not be used further to
perform corrections to the flare. As the pilots indicate, they
cannot simultaneously use two controls in a closed loop fashion
to accomplish the flare and at the same time have confidence

in their ability to get consistently good landing performance.

It must be borne in mind that the ability to satisfactorily
produce the motion and visual cues crucial to the pilot for per-
forming this maneuver is always in question when a ground based
simulator is used. Notwithstanding the motion capability of
the FSAA and the visual resolution capability of the Redifon
system, the evaluation pilots harbored doubts of their ability
to judge altitude, sink rate, and normal acceleration and to
use these cues effectively in controlling the aircraft through
the flare. However, even with these qualifications of the
experimental results, it is felt that their interpretation for
the purpose of distinguishing between significant and inconse-
quential contributions to the flare and landing is valid.

CONCLUSIONS

The conclusions which can be drawn from the experimental
program are qualified where appropriate by the technique used
by the pilot to control flight path and airspeed during the
landing approach. Further qualification of the results obtained
for the landing flare are imposed by the ability to adequately
reproduce the motion and visual cues important to the pilot for
performing this maneuver.

%
The control must also be suitable for use during the

approach and for wave-offs, for adapting to engine failures,

and at the same time be highly reliable and easily maintained.
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With these qualifications, the following conclusions can
be made as a result of the analytical and simulation studies
of pitch attitude, flight path, and airspeed control for powered
1ift STOL aircraft.

e Satisfactory pitch attitude control can be achieved
with a pitch rate command/attitude hold system which
has the following characteristics:

initial pitch response sensitivity = .1 rad/sec2
per inch

steady pitch rate sensitivity = 2.0 deg/sec per inch

e With pitch attitude stabilized and for flight path control
with thrust and airspeed control with pitch attitude, the
characteristics which define path and speed response as
they appear to the pilot are

initial flight path time constant in response to
thrust

overshoot in flight path response to thrust

flight path-speed coupling defined by the change
in speed following a path correction with thrust

speed change due to a change in attitude.

Following the approach of Reference 7, these path and
speed response characteristics can be defined in terms
of the following configuration and flight condition
dependent characteristics

axial velocity damping - Xu and Za/Vo
axial velocity coupling - Xa and Zu

effective thrust inclination - X, /Z_ .
6T GT
® For flight path and airspeed control during the approach
and over a range of configuration characteristics appro-
priate to powered 1lift STOL

flight path-airspeed coupling is the dominant
influence on handling qualities

speed sensitivity to pitch attitude has a moderate
influence on handling qualities
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initial flight path time constant has a negligible
effect over the range investigated (1.5 < TY + < 7 sec).

Favorable or unfavorable flare control characteristics

are not necessarily compatible with control characteris-
tics desired for the approach. The ability to draw firm
conclusions regarding desirable flare characteristics is
restricted by the quality of the flare simulation. Never-
theless, it is likely that

compared to flight path control on the approach,
quicker flight path response will be required to
achieve the landing precision required for STOL

field lengths and touchdown sink rates less than
6 ft/sec

more sophisticated control schemes, such as control

" integration and vertical velocity damping augmenta-
tion, will be required to realize the inherent po-
tential of the basic aircraft's aerodynamics and
reserve thrust for performing the flare.
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TABLE I

PITCH RATE COMMAND/ATTITUDE HOLD CONFIGURATIONS

. é
1 1 s L
K 3 7 § ) 0
K T K q w! sp Tsp ¢ ¢ nax
8 § ¢l deg ' P 1 2 rad/sec deg/sec 5
Config | deg/in | sec | deg/deg | deg/sec Cp rad/sec | rad/sec | rad/sec inch inch ss
1 -5. 1.0 -2. -2, .94 27 .93 2.99 .105 2.2 1.
2 -5. .5 -2. ~2. .94 .27 .93 2.99 .05 2.2 1.
3 -5. .0 -2, -2, .94 .27 .93 2.99 .21 2.2 1.45
4 -5. .0 -3. -3. .98 .27 .96 4.10 .105 1.5 1.0
5 -7.5 | 1.0 -3. -3. .98 | .27 .96 4.10 .16 2.3 1.0
6 -5. .5 -3. -3. .98 .27 .96 4.10 .05 1.5 1.0
7 -5. 2.0 -3. -3. .98 .27 .96 4.10 .21 1.5 1.5
8 -5. 1.0 -1. -1. .82 .28 .86 1.85 .105 3.8 1.0
9 -5. 2.0 -1. -1. .82 .28 .86 1.85 .21 3.8 1.3
8 =% .5 inch

c
breakout

-9€_
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TABLE II

CONTRIBUTIONS TO FLIGHT PATH AND
AIRSPEED RESPONSE CHARACTERISTICS

(a) 6y > 80 degrees

Derivative Response Characteristic
‘ Ay Au Au
T max sS SS
Y Ay Ay AB
8s / \p | 88/ r
X Minimal Large Large Large. Independent
@ of o
T
X Minimal Large Large Moderate. Inde-
u
pendent of eT

(b) 45 < eT <‘80 degrees

Derivative Response Characteristic
Ay Au Au
T max ss ss
Y Ay Ay A8
ss /¢ 88/pp
X Large Minimal Moderate | Large. Independent
o of 6
T
X Moderate Minimal Minimal | Moderate. Inde~
v pendent of eT




TABLE III

CONFIGURATIONS FOR FLIGHT PATH AND AIRSPEED CONTROL

y/$ u/6T
Au
f‘g Xs z! w' L 1 Ymax> <AYSS> <Auss>
X v —L p p Ty ¥ /8 u Uss’Sr |7y oy SS$/aT |\ 20
C 4 ° ZG (i/Te ) (1/T62) T ss T T ft/sec/1b | sec SSTAT bnots/de
onfig | 1/sec | 1/sec T 1 rad/sec | rad/1b| rad/sec knots/deg jmots/deg

1 -.052 .14 -.16 .94 .27 .10 . 0024 -.52 -.002 1.81 1.3 -.83 -2.2
2 -.052 .14 -.3 .94 .27 .15 .0034 -.07 -.0005 2.37 1.2 -.15 -2.2
3 -.052 .14 -.56 .94 .27 .23 .0052 .17 .0021 3.16 1.05 .42 -2.2
4 -.052 .14 -.91 .94 .27 .34 . 0076 .28 .0058 4.5 1.0 .76 -2.2
5 -.052 .3 -.62 .73 .34 .24 .0034 -.05 -.0004 2.45 1.2 -.12 -1.4
6 -.052 .3 -.91 .73 .34 .33 .0047 .11 .0015 3.091 1.1 .31 -1.4
7 -.2 0. -.32 | (.26) (.43) .32 .005 .39 .0018 2.89 1.0 .37 -1.5
8 -.052 .14 .11 .94 .27 .021 . 0005 2.34 -.0048 1.39 5.0 -10.0 -2.2
9 -.052 .14 -.02 .94 .27 .062 .0014 | -6.37 -.0034 1.57 1.9 -2.4 -2.2
10 -.052 .3 -.02 .73 .34 .058 .0008 |-13.7 -.0043 1.49 3.0 -5.1 -1.4
11 -.052 -.32 .73 .34 .149 .0021 -.51 -.0024 1.89 1.5 -1.11 -1.4
12 -.052 0. -.02 | (.08) (.44) .065 .0032 -.71 -.0008 2.02 1.1 -.26 -4.6
13 -.052 | 0. -.32 | (.08) (.44) .16 .0076 .39 .0058 4.42 1.0 .76 ~4,6
14 -.052 | 0. -.62 | (.08) (.44) .25 .012 42 .0124 7.02 1.0 1.03 -4.6
15 -.2 14 -.32 .87 .38 .32 .0036 -.043 -.0002 2.36 1.1 -.04 -1.1
16 -.5 .14 -.02 .91 .54 .54 .0032 | -6.37 -.0009 1.85 1.0 -.28 -.6
17 -.5 .14 -.32 .91 .54 .64 .0037 -.043 -.0001 2.19 1.0 -.02 -.6
18 -.5 .14 -.91 .91 .54 .88 0047 .28 . 0015 3.0 1.0 .31 -.6

_gc-
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Figure 4. Pitch Rate Response Characteristics
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Figure 11. Contributions to Fiight Path Overshoot Ratio
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Figure 16. Closed Loop Roots and Transfer Functions for Pitch Rate
Command Attitude Hold Configurations
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